Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 106(5-2): 055305, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36559463

RESUMO

In this paper, a multiple-distribution-function lattice Boltzmann method (MDF-LBM) with a multiple-relaxation-time model is proposed for incompressible Navier-Stokes equations which are considered as coupled convection-diffusion equations. Through direct Taylor expansion analysis, we show that the Navier-Stokes equations can be recovered correctly from the present MDF-LBM, and additionally, it is also found that the velocity and pressure can be directly computed through the zero and first-order moments of the distribution function. Then in the framework of the present MDF-LBM, we develop a locally computational scheme for the velocity gradient in which the first-order moment of the nonequilibrium distribution is used; this scheme is also extended to calculate the velocity divergence, strain rate tensor, shear stress, and vorticity. Finally, we also conduct some simulations to test the MDF-LBM and find that the numerical results not only agree with some available analytical and numerical solutions but also have a second-order convergence rate in space.

2.
Phys Rev E ; 106(2-2): 025319, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36109994

RESUMO

In this work, we consider a general consistent and conservative phase-field model for the incompressible two-phase flows. In this model, not only the Cahn-Hilliard or Allen-Cahn equation can be adopted, but also the mass and the momentum fluxes in the Navier-Stokes equations are reformulated such that the consistency of reduction, consistency of mass and momentum transport, and the consistency of mass conservation are satisfied. We further develop a lattice Boltzmann (LB) method, and show that through the direct Taylor expansion, the present LB method can correctly recover the consistent and conservative phase-field model. Additionally, if the divergence of the extra momentum flux is seen as a force term, the extra force in the present LB method would include another term which has not been considered in the previous LB methods. To quantitatively evaluate the incompressibility and the consistency of the mass conservation, two statistical variables are introduced in the study of the deformation of a square droplet, and the results show that the present LB method is more accurate. The layered Poiseuille flow and a droplet spreading on an ideal wall are further investigated, and the numerical results are in good agreement with the analytical solutions. Finally, the problems of the Rayleigh-Taylor instability, a single rising bubble, and the dam break with the high Reynolds numbers and/or large density ratios are studied, and it is found that the present consistent and conservative LB method is robust for such complex two-phase flows.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...